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ABSTRACT

A gridpoint statistical interpolation (GSI)-based hybrid ensemble–variational (EnVar) scheme was ex-

tended for convective scales—including radar reflectivity assimilation—and implemented in real-time spring

forecasting experiments. This study compares methods to address model error during the forecast under the

context of multiscale initial condition error sampling provided by the EnVar system. A total of 10 retro-

spective cases were used to explore the optimal design of convection-allowing ensemble forecasts. In addition

to single-model single-physics (SMSP) configurations, ensemble forecast experiments compared multimodel

(MM) and multiphysics (MP) approaches. Stochastic physics was also applied to MP for further comparison.

Neighborhood-based verification of precipitation and composite reflectivity showed each of thesemodel error

techniques to be superior to SMSP configurations. Comparisons of MM and MP approaches had mixed

findings. The MM approach had better overall skill in heavy-precipitation forecasts; however, MP ensembles

had better skill for light (2.54mm) precipitation and reduced ensemble mean error of other diagnostic fields,

particularly near the surface. TheMM experiment had the largest spread in precipitation, and for most hours

in other fields; however, rank histograms and spaghetti contours showed significant clustering of the ensemble

distribution. MP plus stochastic physics was able to significantly increase spread with time to be competitive

with MM by the end of the forecast. The results generally suggest that an MM approach is best for early

forecast lead times up to 6–12 h, while a combination ofMP and stochastic physics approaches is preferred for

forecasts beyond 6–12 h.

1. Introduction

Since the 1990s, much of the research in numerical

weather prediction (NWP) has focused on ensemble

forecasting techniques. The use of ensembles in NWP is

attractive because they can account for uncertainties in

the initial conditions (ICs) and errors within the nu-

merical model. From global and large scales down to

convection-allowing scales, ensembles have been dem-

onstrated to be superior to deterministic forecasts, even

for small ensembles (e.g., Richardson 2000; Palmer

2002; Clark et al. 2009; Vié et al. 2011; Schwartz et al.

2014; Loken et al. 2017; Schwartz et al. 2017). A vital

aspect in the application of ensemble techniques is the

proper design of said ensembles. For global and large-

scale systems, there is a large body of research that has

studied optimal methods for ensemble design (e.g., Toth

and Kalnay 1993; Molteni et al. 1996; Toth and Kalnay

1997; Wang and Bishop 2003; Wang et al. 2004; Eckel

and Mass 2005; Candille 2009).

There is a smaller but growing body of research over

the past decade to increase knowledge and understanding

of best design practices at convection-allowing scales

(e.g., Clark et al. 2010; Schwartz et al. 2010; Xue et al.

2010; Johnson and Wang 2012, 2017; Duda et al. 2014,

2016, 2017; Romine et al. 2014; Johnson et al. 2017). One

of the avenues facilitating this research progress is the

yearly NOAA Hazardous Weather Testbed (HWT)

Spring Forecasting Experiments (SFEs; Kain et al. 2003;

Clark et al. 2012, 2018). Through a collaborative effort

between several government and university-based re-

search agencies, the number of ensembles and ensemble

designs implemented during the SFE have significantly

increased over the last decade (Clark et al. 2018).

Althoughpositive strides have beenmade in convection-

allowing ensemble (CAE) forecasting, ensembles remain

largely underdispersive,meaning the ensemble spreaddoes

not match the actual forecast uncertainty. Ensembles withCorresponding author: Nicholas A. Gasperoni, ngaspero@ou.ed
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inferior spread manifest in overconfident and unreliable

ensemble forecasts. Furthermore, studies have shown

that despite improvements in skill from addressing IC

and lateral boundary condition (LBC) uncertainties in

ensemble design, CAEs remain largely underdispersive

(e.g., Vié et al. 2011; Romine et al. 2014; Schwartz et al.

2014). As a result, increased focus has been put on

methods to address model error within CAEs (e.g.,

Johnson and Wang 2012, 2017; Duda et al. 2014, 2016,

2017; Romine et al. 2014; Loken et al. 2019).

Schemes to sample model errors can be broadly cat-

egorized into four methods: 1) multimodel, 2) multipa-

rameter, 3) multiphysics, and 4) stochastic perturbation

schemes. The first multimodel, describes forecast en-

sembles comprised of members from two or moremodel

dynamic cores (e.g., Ebert 2001; Wandishin et al. 2001;

Eckel and Mass 2005; Candille 2009; Johnson andWang

2012; Melhauser et al. 2017). The second, multiparam-

eter, is a method of addressing model error from unre-

solved subgrid-scale physical processes by perturbing

parameters of one or more physical parameterization

schemes. (e.g., Gebhardt et al. 2011; Hacker et al. 2011;

Yussouf and Stensrud 2012; Duda et al. 2014, 2017) The

third method, multiphysics, addresses physical parame-

terization uncertainty by varying the physics schemes

themselves within the ensemble. (e.g., Stensrud et al.

2000; Gallus and Bresch 2006; Schwartz et al. 2010;

Duda et al. 2014; Johnson and Wang 2017; Loken et al.

2019). The fourth approach, stochastic physics, are

schemes that represent uncertainty of subgrid-scale

processes by stochastically perturbing parameteriza-

tion schemes or their effects on physics and dynamical

forecast tendencies during integration (e.g., Berner et al.

2011; Romine et al. 2014; Berner et al. 2015; Duda

et al. 2016).

Although each of the aforementioned model error

methods have been tested for CAEs, the optimal appli-

cation ofmethods–including combinations of techniques–

for CAEs still remains unknown. There are only a limited

number of recent studies that have directly compared

two or more methods to account for model error at

convection-allowing scales (e.g., Duda et al. 2014,

2016, 2017; Melhauser et al. 2017; Jankov et al. 2019).

Furthermore, the ensembles of these previous studies do

not fully account for IC uncertainty at the resolution

necessary for CAE forecasting; for instance, they do not

account for IC uncertainty at all (e.g., initializing the

ensemble from a single analysis), or they are initialized

from an ensemble analysis at coarser resolution that has

been downscaled or interpolated to higher CAE reso-

lution prior to the forecast. As noted in Schwartz et al.

(2019), this inconsistency of analysis model and/or res-

olution to the CAE forecast configuration may lead to

undesirable error growth characteristics due to potential

discrepancies in model biases, physics, dynamics, and

scale representations. These inconsistencies imply that

ensemble IC perturbations do not fully sample IC errors

across all scales and variables necessary for the convection-

allowing forecast model. Consequently, the use ofmodel

error techniques for CAEs with incomplete or improper

IC error sampling may lead to overcompensation of

error; that is, the model error techniques falsely com-

pensate for unsampled IC errors in addition to model

error. Additionally, results of a hierarchical clustering

analysis of 2009 HWT SFE ensembles by Johnson et al.

(2011) implied that optimal ensemble design may de-

pend on a user’s needs for a given ensemble forecast.

For example, for short-term forecasts (,6 h), emphasis

should be placed on properly addressing IC and micro-

physics uncertainty within the ensemble design; on the

other hand, for next-day convection forecasts, increas-

ing emphasis should be placed on planetary boundary

layer (PBL) uncertainty.

With recent progress in realistic ensemble-based ra-

dar data assimilation (DA) and forecasting of a variety

of convective system case studies (e.g., Yussouf et al.

2013, 2015; Johnson et al. 2015; Snook et al. 2015; Wang

and Wang 2017; Degelia et al. 2018), it is evident that

state-of-the-art ensemble-based DA can now better

sample small-scale IC uncertainties. This provides a

meaningful foundation to better address the question of

which model error sampling techniques are preferred

for CAEs. To the best of the authors’ knowledge, only

Johnson and Wang (2017) have examined potential

benefits of model error methods—in their case, two

multiphysics configurations—under the context of fully

sampled IC errors by a CAEDA system. They designed a

fully tuned 3-km CAE DA and forecast system for the

prediction of nocturnal mesoscale convective systems

(MCSs) over theGreat Plains region. They found positive

impacts of mixed PBL andmicrophysics to samplemodel

errors in addition to the IC sampling that the convection-

allowing DA provided. Specifically, improvements were

found in location error, storm structure of initiating

convection, and the number of members that predicted

observed nocturnal convection initiation (CI).

Here, we examine impacts from different model error

schemes on the prediction of convective systems over

the full contiguous United States (CONUS) using en-

semble ICs that already sample IC errors at convection-

allowing resolution. These ICs are provided by CAE

DA analyses, specifically the gridpoint statistical inter-

polation (GSI)-based ensemble–variational (EnVar) sys-

tem modified for convective-scale assimilation of radar

data by Johnson et al. (2015) andWang andWang (2017).

This EnVar system was implemented as part of the
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Community Leveraged Unified Ensemble (CLUE; Clark

et al. 2018) for the 2017 and 2018HWTSFEs (Clark et al.

2017; Gallo et al. 2018). The scope of this model error

sampling study is broader than in Johnson and Wang

(2017): in addition to larger CONUS domain, CAE

forecasts cover a variety of retrospective cases with dif-

fering convectivemodes (including diurnal and nocturnal

convection), initiating mechanisms, forecast evolutions,

and synoptic forcing conditions. Additionally, multiple

techniques to address model error are compared and

contrasted.

In this study, two single-model single-physics (SMSP)

forecast ensembles were initialized following their own

EnVar cycling. Members from each SMSP forecast

ensemble were combined to form a multimodel fore-

cast CAE containing full-scale IC error sampling from

CAEDA.Additionally, one of the cores—theWeather

Research and Forecasting (WRF) Model—has many

diverse physics options that can be combined to form

a multiphysics ensemble. Finally, a stochastic physics

scheme, specifically the Stochastic Energy Backscatter

(SKEB) scheme of Berner et al. (2011), was implemented

in combination with the multiphysics configuration for

further study. The SKEB scheme adds random stochastic

perturbations to dynamical tendencies of streamfunction

and potential temperature at each forecast time step

(Berner et al. 2011). This combination of SKEB with

multiphysics was motivated by recent studies that have

shown that combining SKEB with mixed physics or other

stochastic physics schemes leads to an overall better per-

formance in the ensemble forecast system, indicating that

addressing model error may be more complex than what

can be represented by one method alone (e.g., Berner

et al. 2015; Duda et al. 2016; Jankov et al. 2017, 2019).

The remainder of the paper is organized as follows:

section 2 describes theGSI-based EnVar system in further

detail. In section 3, the 10 retrospective case studies and

the DA cycling setup is described, along with descrip-

tions of each of the forecast ensemble experiments and

verification methods. Results in section 4 are split into

subsections detailing precipitation and reflectivity verifi-

cation, upper-level verification of other fields, surface

variable verification, and further diagnosis of ensemble

spread characteristics for each experiment. The results are

then summarized with further discussion in section 5.

2. Data assimilation configuration

a. Description of convective-scale GSI-based EnVar
system

The GSI-based EnVar system was operationally

implemented for the Global Forecast System (GFS),

showing improvements to global and tropical cyclone

forecasting (Hamill et al. 2011; Wang et al. 2013; Wang

and Lei 2014). The hybrid approach of EnVar leverages

benefits of both ensemble-based and variational DA

frameworks (e.g., summarized in Wang 2010; Wang

et al. 2013). The inclusion of ensemble covariances

provides more accurate, flow-dependent error covari-

ances compared to predefined static error covariance

matrices in a variational scheme. Additionally, impor-

tant physical and dynamical constraints can be directly

includedwithin the variational analysis. This hybrid system

was further interfaced with regional models including the

Weather Research and Forecasting (WRF) Advanced

Research (ARW) core used by the Rapid Refresh (RAP)

system, and the Nonhydrostatic Multiscale Model on the

B grid (NMMB) used by the NAM. The GSI-based en-

semble Kalman filter (EnKF) system was modified by

Johnson et al. (2015) to incorporate multiscale assimila-

tion, including direct assimilation of convective-scale radar

reflectivity and radial wind observations to update the full

model state vector with WRF including rain, snow, and

graupel hydrometeor mixing ratios. Wang and Wang

(2017) further incorporated these capabilities to the

GSI-based EnVar system. This GSI-based EnVar system

including these convective-scale DA capabilities was im-

plementedwithHigh-ResolutionRapidRefresh (HRRR)

andNorthAmericanMesoscale Forecast System (NAM)-

like convection-allowing prediction, in terms of dynamical

core, physics schemes, and similar CONUS-wide domain

(Duda et al. 2019;Wang et al. 2020, manuscript submitted

to Atmopshere). They were also demonstrated during the

2017 and 2018HWTSFEs by theUniversity of Oklahoma

(OU) Multiscale data Assimilation and Predictability

(MAP) laboratory (Johnson and Wang 2020, manuscript

submitted toMon.Wea. Rev.; Clark et al. 2017;Gallo et al.

2018; Potvin et al. 2019).

This study employs the same convective-scale EnVar

system and configurations used for the 2017–19 HWT

SFEs, with a similar configuration documented in Wang

et al. 2020, manuscript submitted to Atmopshere). A DA

ensemble of 41 members was initialized using a combi-

nation of the GFS control with 20 perturbations each

from the Short-Range Ensemble Forecast (SREF) system

and the Global Ensemble Forecast System (GEFS).

Operational observations from theRAPdata streamwere

assimilated hourly from 1800–0000 UTC each day, with

radar reflectivity DA every 20min for the final hour

(2300–0000UTC). Observations from RAP included con-

ventional surface and mesonet observations, flight-level

aircraft observations, wind profilers, and radiosondes. The

GSI performed additional quality control (QC) proce-

dures, including observation error inflation for question-

able observations and flagging observations with large
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gross errors. Assumed observation errors and gross check

thresholds were provided by a static table within the GSI

package (see Hu et al. 2018 for more information on GSI

QC procedures). Radar reflectivity observations were

obtained from the Multi-Radar Multi-Sensor (MRMS;

Smith et al. 2016). As with RAP data, the GSI performed

additional QC gross error checks on the reflectivity ob-

servations, assuming an observation error of 5dBZ. The

Gaspari and Cohn (1999) function was applied for locali-

zationwith horizontal cutoff distances of 15 and 300km for

radar reflectivity and all other observations, respectively,

and vertical cutoffs in terms of natural log pressure of

1.1 and 0.55, respectively. For covariance inflation, the

posterior ensemble spread was relaxed to match 95% of

the prior spread via the relaxation-to-prior-spread (RTPS;

Whitaker and Hamill 2012) method. These DA parame-

ters were chosen based on results of sensitivity tests

documented in Wang et al. 2020, manuscript submitted

to Atmopshere). The control member was updated by

the EnVar (Wang and Wang 2017); the remaining

40 members were updated by the EnKF and recentered

around the control analysis.

The model grids for DA cycling with NMMB and

ARW had 3-km horizontal grid spacing and covered the

entire CONUS; both grids were similar in location and

size (Fig. 1) and included a stretched vertical grid with

50 levels. A single physics configuration was applied for

each model core during cycling, identical to configura-

tions used during the 2017–19 HWT SFEs. For NMMB,

the physics parameterizations included Ferrier–Aligo

microphysics (Aligo et al. 2018),Mellor–Yamada–Janjić

(MYJ) boundary layer physics (Janjić 1994), and the

unified Noah land surface model scheme (Tewari et al.

2004). These physics settings are identical to the oper-

ational NAM Rapid Refresh (NAMRR) configuration.

For WRF-ARW, the physics schemes included aerosol-

aware Thompson microphysics (Thompson et al. 2008;

Thompson and Eidhammer 2014), Mellor–Yamada–

Nakanishi–Niino (MYNN) level 2.5 boundary layer

physics (Nakanishi and Niino 2009), and the RUC land

surface scheme (Benjamin et al. 2004). This physics suite

is identical to the operational HRRR configuration.

b. Retrospective case studies and DA cycling
configuration

Ten retrospective case studies were chosen to facili-

tate the testing of model error techniques in ensemble

forecast design (Table 1). The cases included many ex-

amples of both discrete isolated storms (e.g., 22 May

2016 case) and organized MCSs (e.g., long-lived squall

lines in the 16 May and 25 May 2015 cases). Diverse syn-

optic forcing and organizing mechanisms were also in-

cluded in these cases, such as strong upper-level troughs,

surface cold fronts, and slow moving or stationary frontal

zones with multiple storm clusters and upscale growth.

TheDA cycling setup is shown in Fig. 2. This cycling is

equivalent to that used during the 2017 and 2018 HWT

SFEs (discussed in section 2a), except for each retro-

spective case different 6-h time windows are chosen for

cycling (Table 1). These times were chosen based on

various features of interest for each case (e.g., near the

start of an MCS event) in order to have a sample that

reflects important features to be captured by the EnVar

convective-scale radar DA. For each retrospective case,

two DA cyclings were performed: one using the NMMB

dynamical core configuration and one using the WRF-

ARW dynamical core configuration. In other words,

there were two full EnVar analyses available at each

case’s final analysis time, which were then used to ini-

tialize 18-h free forecast experiments for differentmodel

error techniques. The settings for these free forecast

experiments are discussed in the next section.

3. Experiment setup

a. Experiment description

Five experiments were conducted for this study, as

shown in Table 2. For each experiment, a 10-member

subset ensemble was initialized using the EnVar control

analysis and first 9 recentered EnKF perturbations. The

10 members were chosen based on practical recom-

mendations of previous studies that found diminishing

returns for ensemble forecast sizes above 10, which

may not justify the significant added computational

cost of running more than 10-member forecasts. (e.g.,

Clark et al. 2011; Schwartz et al. 2014), The first two

FIG. 1.Model domains used in this study. TheNMMBgrid (blue)

was used during the 2017HWTSFEwith 16803 1152 grid points at

3 km horizontal grid spacing. The WRF-ARW grid (red) was used

during the 2018 HWT SFE with 1620 3 1120 grid points at 3 km

horizontal resolution. The gray shaded box indicates the domain

used for verification.
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experiments, NMMB and ARW-SP, were SMSP con-

figurations that extended the same respective model

configurations from DA through the 18-h free forecast.

The third experiment, MM, is a multimodel configura-

tion that for each case randomly combined fivemembers

each from the ARW-SP and NMMB experiments’ en-

semble forecasts into a 10-member forecast ensemble.

Experiment ARW-MP used various combinations of

microphysics, PBL, and land surface model (LSM)

schemes available in the WRF-ARW, equivalent to

mixed-physics combinations used by other groups dur-

ing the 2018HWTSFE (see Table 1 of Gallo et al. 2018).

In total there were four microphysics schemes, three

PBL schemes, and two LSM schemes in various com-

binations for the ARW-MP experiment.1

An additional experiment, ARW-MPSKEB, applied

the SKEB scheme (Berner et al. 2011) during forecast

integration in combination with the multiphysics of

ARW-MP. Stochastic schemes, such as SKEB, func-

tion to represent the variability of subgrid-scale pro-

cesses during the forecast integration by adding random

stochastic noise perturbations to tendency terms. In the

case of SKEB, these random perturbations are added to

the streamfunction and potential temperature dynami-

cal tendency terms at each forecast time step. Duda et al.

(2016) showed for a CAE that the combination of

SKEB with a mixed physics ensemble leads to slightly

improved Brier scores in 1-h precipitation and signifi-

cant spread increases of several variables when com-

pared to ensembles applying just one of those methods.

Here we applied the SKEB scheme in WRF-ARW

following the parameter tuning of Duda et al. (2016)

for experiment ARW-MPSKEB. Because of significant

changes to SKEBwithinWRF and the shorter 18-h free

forecast duration examined in this study, some addi-

tional tuning of the SKEB parameters was performed

(not shown). The final parameters used in ARW-

MPSKEB are shown in Table 3.

b. Verification methods

Neighborhood-based ensemble probability (NEP)

was used to perform objective verifications in terms of

1-h accumulated precipitation and composite reflec-

tivity fields:

NEP
ij
5

1

K
�
K

k51

NP
k,ij
. (1)

TABLE 1. Retrospective cases used for this study, including synoptic forcing and dominant convective features. Synoptic forcing for each

case was determined subjectively.

Case date Final analysis time Synoptic forcing Dominant features

16 May 2015 2300 UTC Strong Dryline convection, upscale growth to long-lived squall line, TX to MO

25 May 2015 1300 UTC Strong Bowing, long-lived squall line, southeast TX

26 Jun 2015 0400 UTC Weak Nocturnal MCSs

14 Jul 2015 1900 UTC Strong Cold front advancing southward across MS and OH valley, squall line and

numerous high wind reports

11 Sep 2015 0100 UTC Moderate Numerous severe hail-producing supercells across KS, upscale growth to

MCS with advancing cold front

22 May 2016 2300 UTC Moderate Strong discrete isolated convection ahead of dryline (west TX) and weak

quasi-stationary fronts (north plains)

17 Jun 2016 2000 UTC Weak Bowing squall line in southeast United States; two MCSs in north and

central plains, development along outflow boundaries

6 Jul 2016 0100 UTC Weak Convective clusters in KS and NE with modest upscale growth; severe

squall line in southern MN

7 Jul 2016 0000 UTC Weak Long-lived bowing MCS originating from supercellular convection

10 Jul 2016 0400 UTC Weak Nocturnal MCS across Dakotas with MCV

FIG. 2. Cycling setup forDA. The ensemble was initialized at tICs,

6 h prior to the time of final analysis, tfa, for each retrospective case

(see Table 1). EnVar analyses using conventional observations

from RAPwere produced hourly (ta1, . . . , ta5; tfa), with 20-min radar

reflectivity DA cycling for the last hour. Note that analyses at ta5
and tfa included assimilation of both conventional and radar re-

flectivity observations.

1 The microphysics schemes include aerosol-aware Thompson,

National Severe Storms Laboratory (NSSL) bulk two-moment

(Mansell et al. 2010),Morrison two-moment (Morrison et al. 2009),

and the newly implemented P3 scheme (Morrison and Milbrandt

2015). The PBL schemes include MYJ, MYNN, and the Yonsei

University scheme (YSU; Hong et al. 2006). The LSM schemes in-

clude Noah (with four soil levels) and RUC (with nine soil levels).
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NEP at grid point ij in the verification is the K-member

ensemble average of neighborhood probability (NP)–the

percentage of grid points that exceed a chosen thresh-

old within a prescribed averaging radius. Additionally,

grid point-based ensemble mean error, spread, and bias

was calculated for evaluation of surface and upper-air

variables. All WRF-ARW forecast and observation

verification fields were bilinearly interpolated to the

NMMBgrid prior to computing verification scores. The

domain used for verification was the gray-shaded box

in Fig. 1, where both WRF-ARW and NMMB grids

overlap.

Neighborhood-based metrics included fractions skill

score (FSS), relative operating characteristics (ROC)

area under the curve, and reliability diagrams. Each of

these metrics is defined as they are encountered in the

results. The chosen neighborhood radius for each metric

was 48km (16 grid points), similar to the size used in

several CAE studies (e.g., Johnson and Wang 2012;

Duda et al. 2014, 2016; Romine et al. 2014). Tuning tests

of skill versus a range of neighborhood radius size con-

firmed 48 km to be a good compromise between higher

skill with increasing radius and the loss of detail due to

increased smoothing of larger radii (not shown). These

metrics were applied to 1-h accumulated precipitation

fields at 2.54, 6.35, and 12.7mm thresholds (0.1, 0.25, and

0.5 in., respectively), as well as 30, 40, and 50dBZ

thresholds in composite reflectivity fields. Verification

fields were obtained from the MRMS, which in addition

to radar mosaics includes a suite of quantitative pre-

cipitation estimation (QPE) products (Zhang et al.

2016). Here the local gauge bias-corrected radar-based

1-h QPE mosaic field was used for precipitation veri-

fication, which has been similarly used in other CAE

studies (e.g., Duda et al. 2016; Johnson et al. 2017;

Jankov et al. 2019).

Hourly RAP analyses were used as verification fields

for gridpoint evaluation of upper-air variables. These

variables included temperature, wind, geopotential

height, and dewpoint temperature. Additionally, surface

variables 2-m temperature, 2-m dewpoint, and 10-m

winds were evaluated against hourly 2.5-km Real-Time

Mesoscale Analysis (RTMA; De Pondeca et al. 2011)

fields. This allowed verification of higher-resolution

details that the 3-km CAE forecast can resolve, since

the RTMA is of comparable resolution. Further, the

RTMA has important downscaling procedures for the

background field plus rigorous QC methods for me-

soscale surface observations to ensure accurate and

physically consistent 2.5-km analyses.

Statistical significance tests were performed on dif-

ferences of verification metrics (FSS, ROC, RMSE,

spread) among the experiments using a one-sided paired

permutation-resampling test with daily contingency ta-

bles from each case as separate samples to ensure in-

dependence (Hamill 1999). Significance is noted at 90%

TABLE 2. Experiment names and configurations.

Experiment name Model core Member number Microphysics PBL LSM

NMMB NMMB 0–9 Ferrier–Aligo MYJ Noah

ARW-SP (single physics) ARW 0–9 Thompson MYNN RUC

MM (multimodel) NMMB 1 ARW Members 0–9 randomly split and taken

from NMMB and ARW-SP

experiments

ARW-MP ARW 0 (control) Thompson MYNN RUC

(multiphysics) 1 Thompson MYJ Noah

2 NSSL YSU Noah

3 NSSL MYNN Noah

4 Morrison MYJ Noah

5 P3 YSU Noah

6 NSSL MYJ Noah

7 Morrison YSU Noah

8 P3 MYNN Noah

9 Thompson MYNN Noah

ARW-MPSKEB ARW As inARW-MP, but including application

of SKEB during forecast (see Table 3)

TABLE 3. SKEB scheme parameter values chosen for experiment

ARW-MPSKEB.

SKEB parameter Value chosen

Backscatter rate for streamfunction 1 3 1025

Backscatter rate for potential

temperature

5 3 1026

Decorrelation time (both variables) 3240 s

Spectral slope (both variables) 22.567

Random number seed 2 1 k (for given member

k from 0–9)
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and 99% confidence levels in the figures, with markers

color coded by the color of the experiment, which is

significantly ‘‘better’’ depending on what verification

metric is used (e.g., higher values for both FSS and

ROC scores)

4. Results

a. Verification of QPE and composite
reflectivity fields

1) EVALUATIONOF SINGLE-MODEL SINGLE-PHYSICS

AND MULTIMODEL ENSEMBLES

Objective verification of 1-h QPE accuracy was per-

formed using the FSS (e.g., Schwartz et al. 2010), the

skill score extension of the neighborhood-based frac-

tions Brier score (FBS):

FSS5 12
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,
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where Ny is the number of grid points in the verification

domain, NEPF(ij) is the neighborhood ensemble forecast

probability at grid point ij, and NPO(ij) is the observed

neighborhood probability at grid point ij–the percentage

of grid points within a predefined radius of ij where

observations exceed a given threshold. FBS is the do-

mainwide mean-squared-differences of neighborhood

probabilities, and FBSworst represents the maximum

value of FBS assuming no overlap in nonzero probability

grid points. FSS is positively oriented, ranging from 0

(no skill forecast) to 1 (perfect forecast).

The FSS of 1-h QPE is shown in the left column of

Fig. 3, calculated using contingency table components

aggregated (summed) over all 10 retrospective cases.

Comparing SMSP experiments, the FSS of NMMB and

ARW-SP show similar patterns at all three precipitation

thresholds, where the ARW-SP has higher skill than

NMMB at early forecast lead times (statistically signif-

icant from hours 1–12 at the light 2.54mm threshold)

followed by the NMMB having higher skill at later

lead times, particularly for the heavier thresholds (sta-

tistically significant for 3–4 of the final 5 h at heavier

thresholds). The MM experiment shows FSS almost

universally higher than both SMSP experiments, with

significantly higher scores compared to the lowest per-

forming single model at all forecast times. MM also has

significantly higher scores than the best SMSP experi-

ment for 3, 5, and 3 out of 18 forecast hours for the

2.54, 6.35, and 12.7mm thresholds, respectively. Although

the higher skill scores are not always statistically significant

compared to the best single model experiment at each

time, the best singlemodel experiment changes depending

on which forecast hour and threshold is in question. Thus,

MM offers consistency in higher FSS at all times whereas

each SMSP experiment has time periods of worse scores.

The right column of Fig. 3 shows the ROC (Mason

1982; Mason and Graham 2002) area under the curve

for composite reflectivity NEP at 30, 40, and 50-dBZ

thresholds. ROC area measures the skill of a prob-

abilistic forecast system in discriminating between

observed events and nonevents over a series of

probabilistic decision thresholds. A ROC area of 1.0 is

considered perfect discrimination, and 0.5 and below is

no better than a random forecast and considered un-

skillful. Statistically significant difference markers of

Figs. 3b,3d, and 3f show the significantly higher experi-

ment. ARW-SP has higher ROC area than NMMB

at each threshold and forecast time, significant for 12, 15,

and 10 of the 18h for low to high thresholds, respectively

(though for the 50-dBZ threshold all skill is lost after

approximately 12 h). At 30 dBZ, MM is higher than

NMMB for all hours (statistically significant for hours

1–15); however, MM is only slightly higher (;0.01–

0.02), than ARW-SP with just three statistically signifi-

cant times (Fig. 3b). At 40 and 50dBZ, MM is again

consistently, significantly higher than NMMB, but ap-

proximately equivalent or lower than ARW-SP, with 5 h

significantly lower at 50 dBZ (Figs. 3d,f). So in terms of

ROC area where one single-model (ARW-SP) is clearly

superior to the other (NMMB), the comparative per-

formance of MM is more mixed.

A neighborhood reliability diagram (Fig. 4) plots

observed frequency against various NEP forecast bins

and displays forecast reliability (proximity to diagonal),

resolution (distance from horizontal climatology base

rate line), and an accompanying sharpness plot showing

forecast counts within each probability bin. Note that

ARW-MP fromFig. 4will be discussed in the next section.

At the lighter 2.54mm threshold (Fig. 4a), both SMSP

experiments have a general overforecasting bias,

meaning the NEP is overestimating the probability of

observed events (falls below the diagonal). Conversely,

MM has an underforecasting bias from 20%–70%NEP;

however, at higher probabilities above 80%, MM is

more reliable than NMMB and ARW-SP.

At the higher 12.7mm threshold, forecast sharpness is

not sufficient to construct a full reliability diagram given

extreme events have smaller sample sizes. In this case,

Schwartz and Sobash (2017) recommends the use of

neighborhood maximum ensemble probability (NMEP)

for extreme events:
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k51
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. (3)

NMEP is the K-member ensemble average of binary

neighborhood probability (BNP) at grid point ij, where if

an event occurs at least oncewithin a search radius r of the

grid point, the probability at the central grid point is equal

to 1 for that ensemble member (0 if no event within r

occurs). This is different fromNEP, which is an ensemble

average of fractionalNPs. In otherwords, withNMEP the

neighborhood radius is a search radius, checking whether

an event occurs within the neighborhood; in contrast,

withNEP the neighborhood radius is an averaging radius,

where the fraction of events within the neighborhood is

recorded. For a more in depth explanation see Schwartz

and Sobash (2017). To maintain consistency, the search

radius r used here for NMEP calculations is identical to

the averaging radius chosen for NEP (48km). Addition-

ally, verification observations for NMEP-based plots fol-

low the construction of NMEP (i.e., observations are

converted to a field of BNPs for each event threshold).

As noted in Schwartz and Sobash (2017), NMEP-

based reliability plots tend to show an overconfidence

bias, and that is true here as well in Fig. 4b.2 Comparing

SMSP experiments, NMMB is more reliable at 0% and

FIG. 3. (left) FSS for NEP of 1-h accumulated precipitation at (a) 2.54, (c) 6.35, and (e) 12.7mm thresholds. (right)

ROC area under the curve for NEP of composite reflectivity at (b) 30, (d) 40, and (f) 50 dBZ thresholds. A 48-km

radius was used to calculate neighborhood-based fields. Markers across the top of each panel indicate statistically

significant differences (90% confidence) for the three difference tests indicated in (e),(f), color coded by the signifi-

cantly higher experiment in FSS or ROC area. For instance, a red asterisk on an FSS panel indicates that experiment

ARW-SP was significantly higher than experiment NMMB at a given time. Markers outlined with a black circle

indicate statistically significant differences at the 99% confidence level.

2 Note the base rate is higher than in Fig. 4a because, despite the

more extreme event threshold, NMEP uses binaryNPs while NEP

uses fractionalNPs, the latter which will always remain less than or

equal to BNPs at all grid points for a given threshold (assuming the

same neighborhood size).
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10% thanARW-SP; however, ARW-SP is more reliable

at higher probabilities while NMMB falls below the

no skill line. Experiment MM has the best reliability,

compared to SMSP experiments, at higher NMEP be-

tween 50% and 100%. There is an accompanying re-

duction in sharpness at both QPE thresholds for MM

(Figs. 4c,d).

Subjective evaluation of fields of NEP $ 30dBZ

showed two main benefits to MM over SMSP experi-

ments, as demonstrated in Fig. 5. The first benefit ofMM

occurs where NMMB and ARW-SP have similar mag-

nitude of errors, but in opposite directions or differing

locations within the domain. For example, the 16 May

2015 case featured a widespread outbreak of severe

weather from Texas through Oklahoma and into

Missouri, with upscale growth of convection into a

line as it progressed eastward. The NMMB (Fig. 5a)

and ARW-SP (Fig. 5b) show mixed simulations of the

evolution of this convection; the NMMB simulates the

southernmost portion of convection in Texas well, but

is missing convection in Missouri and has a slight east-

ward bias in between, while the ARW-SP has much

stronger probabilities through Arkansas and Missouri

but has a slow propagation bias and misses the southern

and eastern extent of observations. MM (Fig. 5c), on the

other hand, has probability coverage of the full length and

width of the line from Missouri down into Texas, as the

combined effects of the two single model simulations

cancel out the relative location errors of each model.

The second benefit to MM is the resistance to forecast

skill drop-offs that are present in the NMMB andARW-

SP experiments. This is illustrated with two times from

the 14 July 2015 case (Figs. 5d–i). Early in the forecast,

the ARW-SP had much lower skill than the NMMB

because it missed the bulk of convection that was oc-

curring in the southeast (Fig. 5e), whereas the NMMB

had good coverage (Fig. 5d). But 9h later, the skill

of ARW-SP increased substantially while the NMMB

dropped out. This can be seen by theMCS that developed

over the Great Plains–the NMMBhas just a small area of

storms with weak probabilities too far south (Fig. 5g),

while the ARW-SP model has stronger probabilities in

the correct locations (Fig. 5h). The MM at each of these

times (Figs. 5f,i) has probability coverage at all of these

locations.While theMM is not as skillful as the best single

model at each time due to reductions in probabilities,

the MM is skillful at both times whereas the NMMB

and ARW-SP were only skillful at one time each.

2) EVALUATION OF MULTIPHYSICS

The ARW-MP experiment significantly improves

upon the FSS, at 99% confidence, of ARW-SP at all

FIG. 4. Neighborhood-based (a),(b) reliability and (c),(d) sharpness diagrams for experiments ARW-SP,

NMMB, ARW-MP, and MM, aggregated over forecast hours 7–18 and 10 cases for 1-h accumulated precipita-

tion at indicated thresholds. In (a) and (b), the diagonal dashed (y 5 x) line indicates perfect reliability, while the

dashed line below it is the no skill line. Solid vertical and horizontal lines represent sample base rate climatology.

Note that neighborhood maximum ensemble probability is used for the 12.7mm threshold plots (right column; see

text for further details).
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but two forecast hours at the low 2.54mm precipitation

threshold (Fig. 6a). Additionally, ARW-MP is about

equal to or higher in FSS than MM at all forecast hours,

with 7 of the final 10 h showing statistical significance. At

higher thresholds (Figs. 6c,e), ARW-MP showed worse

FSS for early forecast lead times compared to ARW-SP,

then significantly improved FSS in the second half of the

forecast, the times that ARW-SP had poorer results.

ARW-MP is approximately equal to MM in skill at the

6.35mm threshold for hours 9–18. MM otherwise has

more times of statistically significantly better skill at

higher thresholds (for 6 and 11 out of 18 forecast hours,

respectively) than ARW-MP despite the improvement

of ARW-MP over ARW-SP over the latter half of the

forecast. In terms of ROC area of composite reflectivity,

ARW-MP showed significant improvement over each

NMMB, ARW-SP, andMM experiments at both 30 and

40dBZ thresholds, with a majority of times showing

statistical significance (Figs. 6b,d). In terms of 1-h QPF,

the ARW-MP experiment had nearly perfect reli-

ability from 0%–80% NEP at 2.54mm with a slight

overforecast bias at 90% and 100% (Fig. 4a). At the

12.7mm threshold, ARW-MP had improved reliabil-

ity over ARW-SP, NMMB, and MM at NMEP above

30%, with the largest improvements over MM in the

30%–60% range (Fig. 4b).

Figures 7 and 8 show subjective examples of cases and

forecast hours when ARW-MP was more skillful than

NMMB,ARW-SP, andMM. These cases tended to have

strong sensitivity to near-surface physics, with the

diversity of sampled physics from ARW-MP leading

to improved forecasts. The first example is from the

FIG. 5. NEP (color fill) of composite reflectivity greater than 30 dBZ for (left) NMMB, (middle)ARW-SP, and (right)MMexperiments.

Valid times for each row are shown at the left with forecast hour in parentheses. Neighborhood probability of MRMS observed composite

reflectivity greater than 30 dBZ is plotted in black contours at 20% intervals, starting at 10%.
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22 May 2016 case, which featured initially severe

discrete convection ahead of a dryline in western

Texas northward into Kansas, as well as ahead of a

cold front extending northward. This convection grew

upscale into MCSs during the overnight hours, fueled

by moisture from the south advected from a strong

low-level jet. Figures 7a–d shows that ARW-MP ten-

ded to capture the northern plains convection with

highest probabilities in the correct locations, as well as

coverage of isolated cells in west-central Texas. Eight

hours later (Figs. 7e–h), ARW-MP has managed to

maintain the highest probabilities and largest spread

of coverage over all the MCS activity in the northern

plains as well as the MCS in southern Oklahoma.

The second example is from the 17 June 2016 case,

which featured twoMCS systems and weak large-scale

ascent (Fig. 8). Outflow from a midday MCS in

Minnesota helped fuel additional storm development

and upscale MCS growth to the south along the cold

front, while an MCS initiated ahead of a cold front

over Nebraska and Kansas due to strong instability

from daytime heating. The NMMB does a particularly

poor job simulating these MCSs (Figs. 8a,e), while the

ARW-SP does markedly better (Figs. 8b,f). ARW-MP

clearly improved upon ARW-SP with stronger prob-

abilities and better southward propagation in both

MCSs (Figs. 8c,g). MM does have probability coverage

of both MCSs, but is significantly hindered by the poor

NMMB simulation.

3) IMPACT OF STOCHASTIC PHYSICS

With SKEB applied to ARW-MP, small but statisti-

cally significant improvements were found in FSS at the

highest QPE thresholds compared to ARW-MP, par-

ticularly for the 12.7mm threshold within the last 8

forecast hours, 5 of those being significant (Fig. 9). On

the other hand, small magnitude reductions in FSS were

found at the light threshold for the last 8 h, 4 of which

were significant. These small differences are statistically

significant because, compared to other experiments,

there is less variation in the case-by-case differences

due to the persistent, larger-scale effects of SKEB.

FIG. 6. As in Fig. 3, but with the addition of experiment ARW-MP and statistical significance tests of ARW-MP

against MM, NMMB, and ARW-SP experiments.
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This result is similar, though less pronounced, to results

of Duda et al. (2016), who found consistent improve-

ments in BS with the application of SKEB in combina-

tion with a multiphysics ensemble. The less pronounced

results may be related to IC uncertainty being sampled

by the convective-scale DA system, whereas Duda et al.

(2016) did not address IC uncertainty causing the SKEB

to also partially compensate for the missing IC uncer-

tainty. By the final approximately 3 h of the forecast, the

FSS of ARW-MPSKEB surpasses the skill of MM at

6.35 and 12.7mm, with statistical significance at hours

17 and 18, a notable improvement compared to the

lower FSS of ARW-MP (without SKEB). In terms of

ROC area, the differences between ARW-MPSKEB

and ARW-MP were minor for all thresholds, though

like FSS, some differences were also statistically sig-

nificant favoring SKEB (not shown).

The reliability diagram in Fig. 10 shows results ag-

gregated over the final 6 h of the forecast, when SKEB

has the largest impact within the forecast. At the lighter

2.54mm threshold, there is a noticeable improvement

in reliability of the mid 50%–70% probability ranges

comparing ARW-MPSKEB to ARW-MP. For the

NMEP-based reliability diagram at 12.7mm, the ARW-

MPSKEB experiment improves the reliability of the

70%–100% range, despite a reduction in sharpness at

these probabilities (Figs. 10b,d). In each case, ARW-

MPSKEB has the best reliability of all experiments.

Although skill is an important consideration in the

application of SKEB, the primary goal of SKEB is to

increase the spread of generally underdispersive CAE

forecasts. A simple way to quantify the ensemble spread

of precipitation is by the application of the correspon-

dence ratio (CR; Stensrud andWandishin 2000). CRwas

FIG. 7. NEP ofCREF. 30 dBZ as in Fig. 5, but for the 22May 2016 case at forecast hours (a)–(d) 3 and (e)–(h) 11. Respective experiments

are indicated at the top of each column.
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applied for nocturnal MCS simulations by Johnson and

Wang (2017) and Johnson et al. (2017). Briefly, CR is

the ratio of the number of grid points where ensem-

ble members agree that a threshold was exceeded

(intersection area), to the number of grid points where

any ensemble member exceeded the threshold (union

area), each here summed over all grid points in the 3-km

verification domain. Any predetermined number of

‘‘ensemble agreement’’ can be used, with higher num-

bers being stricter applications (the strictest being a re-

quirement that all ensemble members agree). Here we

chose a more relaxed number of 4 out of 10 members as

was also used in Johnson andWang (2017).3 A CR of 0.0

(1.0) indicates all members disagree (agree) on where

precipitation is forecast, thus maximizing (minimizing)

spread. In Fig. 11, MM has the largest amount of spread

(lowest ensemble agreement) in QPE among all ex-

periments at all times, while ARW-SP and NMMB

tend to have the least amount of spread. Experiment

ARW-MP improves the spread of ARW-SP after

about 6 h into the forecast, and the addition of SKEB

in ARW-MPSKEB further increases the spread (de-

creases CR) within the last half of the forecast. By hour

18, ARW-MPSKEB has as much spread in precipita-

tion as MM.

4) IMPACT OF BIAS CORRECTION

Systematic biases may be playing a role in the pre-

cipitation and reflectivity verification, possibly affecting

some of the comparisons. These biases are important to

consider given that they only artificially increase fore-

cast uncertainty within an ensemble (e.g., Eckel and

Mass 2005). Further, Loken et al. (2019) found that

their bias-corrected single-physics ensemble was as

skillful and reliable as their multiphysics configuration for

precipitation verification. This leads to an important

consideration—how are the SMSP and model error ex-

periments each affected by systematic biases?

A cumulative density function (CDF)-based bias

correction procedure was applied to both composite

reflectivity and 1-h precipitation forecasts. CDF-based

bias correction works by replacing forecast data with the

observed value at an equivalent percentile (for more

FIG. 8. As in Fig. 7, but for the 17 Jun 2016 case at forecast hours (a)–(d) 6 and (e)–(h) 9.

3 Johnson andWang (2017) examined CR with 4- and 8-member

agreement, out of 10 total members. CRwith 4-member agreement

had larger magnitude values and differences among experiments

than 8-member agreement; however, the relative positioning be-

tween experiments remained the same for both agreement values.
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details see, e.g., Johnson and Wang 2012; Voisin et al.

2010). This CDF-based correction was implemented

hour-by-hour and ensemble member-by-member for

each of the experiments with forecast and observed

CDFs aggregated over all 10 retrospective cases. Typically

the CDFs would be built with an independent training

dataset; however, here the CDFs were built with all

10 cases to ensure a robust distribution.

Figure 12 presents the results of bias-corrected veri-

fication FSS in 1-h precipitation and ROC area of

composite reflectivity. The relative position of experi-

ments remains nearly identical to Fig. 3. The differences

in SMSP experiments are increased at early lead times,

notably due to a slight reduction in skill of NMMB after

bias correction coupled with an increase for ARW-SP

within the first 6 h of the forecast. In terms of ROC area,

on the other hand, the differences among SMSP exper-

iments were reduced due to the increased score for ex-

periment NMMB. There are less statistically significant

differences in SMSP experiments than shown in Fig. 3.

particularly for higher thresholds of ROC area and FSS.

The MM experiment is also notably improved with

highest ROC area at 30 dBZ, significantly higher than

ARW-MP in 5 of the first 7 forecast hours. Although

FSS did not improve much, MM had notably reduced

FBS after bias correction that was significantly lower

than each of the other experiments at most forecast

hours (not shown). Experiment ARW-MP also has

some improved FSS for 1-h precipitation, but the rel-

ative differences compared to ARW-SP—including

significance—remains largely unchanged after bias

correction. On the other hand, ARW-MP has notably

lower scores in ROC area, indicating that systematic

biases were artificially inflatingROC area for reflectivity

previously. The noted advantages of ARW-MP in ROC

area have been significantly reduced overall, though

many forecast hours remain significantly higher than

either SMSP experiment, especially at the lowest

threshold.

These results suggest that precipitation and reflectiv-

ity forecasts with MM configurations may be helped by

bias correction in cases where one model has signifi-

cantly larger error than the other. Although the MM

avoids the ‘‘skill drop-off’’ issue of SMSP experiments,

when onemodel core is inferior to the other theMMwill

not have the best skill. Since bias correction helps cor-

rect the error gaps between models (as seen in ROC

area, for example), the skill ofMM increases. The caveat

here is that this bias correction is ‘‘perfect’’–as in bias

corrections were not performed with a training set of

data due to the limited number of cases. Thus, the dif-

ferences from raw to bias-corrected verification might

be overestimating the effect of bias correction based on

independent training data.

b. Upper-level verification against RAP analyses

Time series of ensemble mean RMSE and ensemble

spread are shown for selected upper-air variables in

Fig. 13, with vertical profiles in Fig. 14 at forecast hour

18, each averaged over all 10 cases. In terms of error,

ARW-SP is lower than NMMB by about 1ms21 for

250 hPa zonal wind and 0.2K in 500hPA temperature

(Figs. 13a,b). In fact, the NMMB has the highest error

at nearly all levels of wind, temperature, and dewpoint;

only with geopotential height does the NMMB have

lower errors competitive with other experiments (Fig. 14)

FIG. 9. As in the left column of Fig. 3, but for experiments MM

(green), ARW-MP (cyan), andARW-MPSKEB (purple).Markers

indicate statistically significant differences between pairs of ex-

periments indicated in (c), color coded by the experiment with the

higher FSS at a given time.
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The other experiments (ARW-SP, ARW-MP, MM,

ARW-MPSKEB) are clustered more closely together for

upper-level fields above 500hPa. At and below 700hPa,

in particular for thermodynamic variables, the experi-

ments have larger error differences with ARW-MP and

ARW-MPSKEB the lowest in error followed by slightly

higher MM (Figs. 13 and 14). The exception is MM with

the lowest error for early forecast lead times of 850hPa

zonal wind (Fig. 13d) and the lowest geopotential height

error across all levels and forecast times (Figs. 13c and

14c), whereas the ARW-based experiments have large

errors due in part to biases (not shown). Both MM and

ARW-MP show clearer error reduction for lower-level

variables. For instance, MM has the lowest error in

700hPa geopotential height and 850hPa zonal wind for

many of the forecast hours (Figs. 13c,d). ARW-MP and

ARW-MPSKEB have the lowest magnitude error in

850hPa temperature and 925 hPa dewpoint. SKEB has

practically no impact on the error of any of these vari-

ables, as ARW-MPSKEB and ARW-MP have nearly

identical error at all levels. Past studies comparing ex-

periments with and without SKEB also showed small

changes in error of most upper-air fields (e.g., Berner

et al. 2015; Duda et al. 2016; Jankov et al. 2017, 2019).

In terms of spread, both SMSP experiments tended to

have the lowest amounts among the experiments, as

expected. MM displays a large amount of spread at all

levels and variables (Figs. 13 and 14); furthermore, this

increased spread occurs at the beginning of the forecast

and is maintained throughout (Fig. 13). ARW-MP adds

only a marginal amount of spread at upper levels;

however, closer to the surface the amount of spread

added increases significantly, particularly in thermody-

namic variables around 850 hPa and below (Fig. 14).

Additionally, the spread is increased over time and it

takes approximately 4–6h to show noticeable increases

over ARW-SP (Fig. 13). The addition of SKEB in

ARW-MPSKEB has a large impact in ensemble spread

growth throughout the forecast at all levels, most nota-

bly at the highest levels and for wind variables. By the

end of the forecast, ARW-MPSKEB has larger spread

than MM for all wind levels, and in temperature

and geopotential height for levels 700 hPa and below

(Figs. 14a–d); in dewpoint the spread is still slightly

lower for upper levels, with differences decreasing

closer to the surface (Fig. 14e). In general SKEB has

less impact on spread in thermodynamic variables,

particularly in dewpoint. Conversely, MM shows the

most spread in moisture above the surface.

c. Surface field verification against RTMA analyses

Verification against 2.5-km RTMA analyses for sur-

face variables is shown in Figs. 15 and 16. Comparing

SMSP experiments, the error of ARW-SP wind is about

0.3–0.4m s21 lower than NMMB—significantly lower at

99% confidence across all hours—as well as significantly

lower temperature error for middle forecast hours 5–14,

with differences between 0.1 and 0.3K. On the other

FIG. 10. As in Fig. 4, but aggregated over forecast hours 13–18 andwith the addition of experimentARW-MPSKEB

(purple).
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hand, NMMB has significantly lower dewpoint error

across the forecast, around 1K less than ARW-SP (sig-

nificant at 99% confidence). MM has significantly lower

temperature error (averaging ;0.3K) across nearly all

hours than both SMSP experiments. However, MM is

only significantly lower in error than the worst SMSP

experiment for dewpoint and wind, and against the best

SMSP experiment is at times significantly worse (e.g.,

last 6 h in wind versus ARW-SP; first 8 h in dewpoint

versus NMMB). This is consistent with contingency-

based verifications that showed when one SMSP is

clearly inferior to the other, MM can do no better than

the best SMSP experiment. The ARW-MP experiment

has statistically significant reductions in temperature

(0.1–0.3K) and dewpoint error (;1K) at most forecast

hours compared to ARW-SP.

Comparing model error experiments MM to ARW-

MP, the differences in wind are generally small (no

larger than 0.1m s21), with MM lower in early hours 1–4

and ARW-MP lower at later forecast hours 13–18. In

temperature, MM is significantly lower (0.1–0.2K) than

ARW-MP for early hours 1–6, after which the differ-

ences become negligible. However, in terms of dew-

point ARW-MP is significantly lower in error by about

0.1–0.3K, significant over forecast hours 2–18. Statistically

significant reductions in error are found with ARW-

MPSKEB compared against ARW-MP for many fore-

cast hours of dewpoint and wind, although the reduction

is nearly negligible in terms of magnitude (;0.01–0.02K

and ;0.01–0.02m s21, respectively). Note in Figs. 15

and 16 that because of the small magnitude differences,

ARW-MP (cyan) is visually overlapped by ARW-

MPSKEB (pink) at most times in terms of RMSE.

The spread for surface variables follows a similar

pattern of spread in upper-level variables below

700hPa. MM tended to present the most spread, particu-

larly for early forecast hours, averaging around 1.1–1.2K

andms21 in temperature andwind, respectively, and 1.3K

in dewpoint. NMMB had roughly 0.2K larger spread in

both thermodynamic variables thanARW-SP, but about

0.1m s21 less spread for wind. The increase in spread of

ARW-MP is more immediately apparent for surface

variables with statistically significant (not shown) in-

creases compared toARW-SPwithin the first 3h, whereas

at upper levels it took longer for the forecast to noticeably

increase spread. The spread increases throughout the

forecast and matches the spread of MM within later

forecast hours. The addition of SKEB increases the

spread significantly (not shown) in both thermodynamic

and dynamic fields; however, the effect is larger in mag-

nitude and present earlier for 10-m wind fields.

The most notable of the surface biases shown in

Fig. 16 is in 2-m dewpoint. ARW-SP has a significant

FIG. 11. Correspondence ratio at indicated thresholds in 1-h pre-

cipitation for 4-member agreement.
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moist bias around 1.1K across the forecast. NMMB also

shows a moist bias, though it averages closer to 0.5K.

Because both biases are of the same sign, MM thus also

has a significant moist bias, roughly split in between the

biases of ARW-SP and NMMB (;0.8K). Experiments

ARW-MP and ARW-MPSKEB show the least amount

of bias in dewpoint (slight dry bias;0.2K). This reduced

bias is partially responsible for the significant thermo-

dynamic error reductions of ARW-MP compared to

ARW-SP (Figs. 15a,b). A region-based (western versus

eastern CONUS) bias correction for surface variables

was attempted, but the reduction in RMSE was rela-

tively small after correction and had little impact on the

relative significant differences among experiments as

seen in Fig. 15 (not shown).

d. Ensemble spread diagnostics

The increased ensemble spread within MM and

ARW-MPSKEB can be illustrated and further com-

pared in two-dimensional atmospheric fields. For ex-

ample, Fig. 17 shows the 500 hPa geopotential height

spread for the final forecast hour of the 16May 2015 case

over the eastern CONUS. The 5760-m contour is also

shown here for the ensemble members and RAP analysis

extending to the northeast through Texas, Oklahoma,

and Missouri. This contour was part of the trough that

helped set up a significant severe weather outbreak

for this case. The NMMB model (Fig. 17a) has a slight

eastward bias of the ensemble, though the RAP analysis

remains within the ensemble envelope across most of

the central CONUS. On the other hand, ARW-SP

(Fig. 17b) has a large westward bias in ensemble mem-

bers, with the RAP analysis contour lyingmostly outside

of the envelope. TheMM experiment (Fig. 17c) displays

greatly increased spread across the domain, with the

RAP analysis contour falling within the ensemble en-

velope at all locations. It should be noted, however, that

clustering appears in the ensemble, most substantially in

the northeast region. The ARW-MPSKEB experiment

(Fig. 17d) displays a notable increase in the spread

compared to the ARW-SP experiment. Although a

slightly westward bias still exists, the RAP contour lies

within or very near the ensemble envelope at most lo-

cations. Another example of spread is shown in Fig. 18

FIG. 12. As in Fig. 6, but using bias corrected (left) precipitation and (right) composite reflectivity.
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for 850-hPa dewpoint, with the 68C contour plotted for

the 22May 2016 case. This contour outlines themoisture

plume extending from the gulf to the northern Great

Plains, with a sharp highly variable dryline extending

northward through west Texas. Both the NMMB and

ARW-SP struggle maintaining spread to capture all of

the details of the east–west variations in the RAP

moisture contour, while MM and ARW-MPSKEB have

substantial improvements to the spread in order to

capture these moisture variations.

Another method to diagnose ensemble spread is

via rank histograms, where observations are counted

according to rank relative to ensemble forecasts (e.g.,

Hamill 2001). With ‘‘perfect spread,’’ we would expect

an equal chance for a given observation to fall within any

of the 11 bins created by sorted ensemble members.

Most often for CAE, significant underdispersion exists

where most observations fall in the lowest and highest

bins and lower amounts exist in middle bins, as seen most

dramatically for experiments NMMB and ARW-SP in

Fig. 19. TheMMexperiment has a ‘‘w’’ shape in all fields

examined, where there are an excessive number of ob-

servations in themiddle bin in addition to the lowest and

highest bins, and lower amounts in other bins. This is a

clear indication of clustering within the ensemble, as we

subjectively saw in Fig. 17. While the spread is certainly

increased compared to either SMSP experiment, clus-

tering is an undesirable quality of the resulting ensemble

distribution. Because of this high middle bin, the actual

closeness of spread to an ideal uniform rank distribution

is substantially worse for MM than for ARW-MPSKEB,

in terms of median-absolute-differences of bin fre-

quencies (shown in legends of Fig. 19). The impact of

SKEB is again seen most strongly at upper-level fields

(Figs. 19a,b). For surface fields, biases can be seenwithin

the rank histograms. In temperature, NMMBandARW-

SP (and MM to a lesser extent) show cold biases in addi-

tion to underdispersion, while experiments ARW-MP and

ARW-MPSKEB have minimal bias and further flatten

the histogram. In dewpoint, each of NMMB, ARW-SP,

FIG. 13. Ensemble-mean RMSE (solid) verified against RAP observations, and ensemble spread

(dashed) for all experiments in (a) 250-hPa u wind (m s21), (b) 500-hPa temperature (K), (c) 700-hPa

geopotential height (m), (d) 850-hPa u wind (m s21), (e) 850-hPa temperature (K), and (f) 925-hPa

dewpoint (K).
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andMMhave a largemoist bias asmost observations fall in

the first rank, while ARW-MP and ARW-MPSKEB have

flatter, mostly unbiased histograms.

5. Summary and discussion

The optimal design of convection-allowing ensemble

(CAE) forecasting systems necessitates the use of

techniques to address model error uncertainty within

the ensemble. Some studies have demonstrated the

usefulness of various model error techniques for CAE,

but usually in systems where IC uncertainty is either

neglected or only crudely addressed. Here, the GSI-

based EnVar system extended for convective-scale DA

by Johnson et al. (2015) andWang andWang (2017) was

applied to provide a full multiscale sampling of IC un-

certainties, which provides amoremeaningful basis for a

comparative study on the effects of model error tech-

niques. Two configurations of this EnVar were used in

this study: EnVar with the NMMB model during DA

cycling, and EnVar with WRF-ARW model during

DA cycling. These configurations were applied to 10

retrospective case studies with a variety of different

synoptic forcing and severe weather morphologies. The

10-member CAE forecasts out to 18h were launched

from both of these samples of multiscale analyses,

covering a total of five CAE forecast experiments. Two

experiments, NMMB and ARW-SP, applied the same

single-model single-physics (SMSP) model settings to

the forecast. Additionally, a multimodel (MM) experi-

ment combined five random ensemble members each

from NMMB and ARW-SP. Another experiment

applied model error via different combinations of

PBL, microphysics, and land surface physics schemes

(ARW-MP), as well as the combination of multi-

physics with the SKEB stochastic physics scheme

to address the effect of subgrid-scale physics uncer-

tainty on the large-scale dynamical tendencies (ARW-

MPSKEB).

The results were compared objectively in terms of 1-h

QPE and composite reflectivity using neighborhood-

based verifications metrics including FSS, ROC area,

reliability and sharpness diagrams, and correspondence

ratio. Subjective analysis of NEP $ 30dBZ highlighted

scenarios that MM and ARW-MP performed the best.

Additional verification was performed on ensemble

FIG. 14. Vertical profiles of ensemble-mean RMSE (solid) and ensemble spread (dashed) for the indicated fields in each plot, averaged

over all cases for forecast hour 18. Note the different vertical scale in (e) for dewpoint.
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mean upper-level fields (against hourly RAP analyses)

and surface fields (against 2.5-km RTMA analyses) and

compared to average ensemble spread. The differences

in spread among the experiments were further diag-

nosed using rank histograms and representative 2D ex-

amples. Themain results of this study are summarized in

the following bullets:

d Among SMSP experiments, ARW-SP had superior

performance to the NMMB for lighter precipitation

fields and earlier forecast times, as well as much of the

mean RMSE verification. The NMMB decayed MCSs

too early in cases where decaying MCSs occurred in

reality (most often between midforecast hours 6–12),

relative to the ARW-SP. However, the NMMB had

superior performance in the final 6 forecast hours,

particularlywith heavy precipitation (6.35 and 12.7mm).

This was primarily due to enhanced accuracy in the

extent of new CI and redeveloping MCS events, while

the ARW-SP often had enhanced spurious activity and

overforecasted some MCS areas.
d Each of the model error experiments MM, ARW-MP,

and ARW-MPSKEB compared favorably to NMMB

andARW-SP inmanyof objective verification scores and

FIG. 15. Verification (RMSE, solid lines) and ensemble spread (dashed lines) of surface variables, with a panel of

markers below indicating statistically significant differences (90% confidence) in RMSE for the difference tests

indicated, color coded by the significantly lower experiment in RMSE. Markers outlined with black indicate sig-

nificant differences at 99%confidence. (a) 2-m temperature (K), (b) 2-m dewpoint (K), (c) 10-m uwind (m s21), and

(d) 10-m y wind (m s21). The ensemble-mean fields were verified against RTMA 2.5-km analyses.
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all of the ensemble spread diagnostics. This is largely

because each model error experiment successfully

avoided the various differing deficiencies of the SMSP

ensembles at any particular time, such as the low FSS of

ARW-SP for later hours in heavy precipitation, or the

low ROC area in reflectivity of NMMB. While the re-

sults are consistent with other CAEmodel error studies,

this is the first to compare two or more techniques to

address model error uncertainty for CAE forecasting in

the context of already-sampled multiscale IC uncer-

tainty. Therefore, it can be reasonably inferred that the

sampling methods used here are primarily sampling

the deficiencies in model error uncertainty rather than

the full error coming from both the IC andmodel errors.
d The MM experiment had the highest FSS for heavy

precipitation thresholds, as well as the most amount

of spread added consistently throughout the entire

forecast. Subjectively, the MM avoided single-model

skill drop-offs and performed better in cases where

each single model had errors of opposite signs or in

differing locations. Additionally, bias correction in

precipitation and reflectivity slightly improved the

verification scores of MM relative to other experi-

ments. This is consistent with Johnson and Wang

(2012), whose bias-calibrated MM ensemble showed

more times with greater skill compared to SMSP en-

sembles. However, there was a cost in forecast sharp-

ness, and undesirable ensemble clustering was found in

rank histogram distributions of spread in all variables.

Additionally, the MM showed minimal benefit when

one single-model experiment had consistently superior

performance to another, for instance where ARW-SP

had superior ROC area and ensemble mean error of

upper-level fields above 500hPa.
d The ARW-MP experiment significantly improved

upon FSS precipitation verification over ARW-SP for

lighter precipitation thresholds and the final 9–12h of

heavier precipitation thresholds. This was accompa-

nied with large increases in forecast discrimination

and reliability of precipitation, as well as forecast

spread of near-surface fields. However, the increase in

spread was limited to lower-level fields below 850hPa

and took a ‘‘spinup’’ period of at least 6 h for notice-

able increases to appear. Bias correction reduced the

differences between ARW-MP and the SMSP exper-

iments, particularly in terms of ROC area for com-

posite reflectivity. However, many of the differences

remained statistically significant—particularly for ligh-

ter thresholds (2.54mm in 1-h QPF; 30dBZ in com-

posite reflectivity). This is somewhat in contrast to

Loken et al. (2019), who showed little statistically sig-

nificant differences among bias-corrected single- and

mixed-physics ensembles for 6-h QPF verifications.
d Adding SKEB on top of ARW-MP showed small but

significant improvements to precipitation verification

in the latter half of the forecast for heavy (6.35 and

12.7mm) precipitation. This is consistent with past

results (e.g., Duda et al. 2016; Jankov et al. 2019), but

noteworthy because this study already incorporates

a full multiscale sampling of IC uncertainty from the

FIG. 16. Biases of the ensemble mean for surface fields (a) 2-m temperature (K), (b) 2-m dewpoint (K), (c) 10-m u

wind (m s21), and (d) 10-m y wind (m s21).
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EnVar DA system. While there was an accompanying

drop in forecast sharpness; however, there was an in-

crease in the reliability of midprobabilities and overall

spread of precipitation systems. Among other fields,

there was practically no change in error but substantial

increases in ensemble spread over time, particularly

for wind and geopotential height fields.

The comparison of MM to ARW-MP and ARW-

MPSKEB led to some mixed results and depends upon

what aspect of the forecast is examined. ARW-MP

and ARW-MPSKEB compared favorably to MM with

lighter precipitation thresholds, particularly for weakly

forced cases that are more sensitive to physics uncer-

tainties. However, MM had significantly better skill

in heavy precipitation across all forecast times, with

noticeably increased spread of precipitation systems

throughout the forecast that was only matched by

ARW-MPSKEB by the end of the forecast. Similarly in

upper-level fields, MM has consistently the highest

amount of spread at all forecast times, including early

lead times, while ARW-MPSKEB only matched or

exceeded this spread within the last 3–6h of the forecast.

In terms of error, ARW-MPSKEB was slightly lower

than MM across most upper-level variables, and most

noticeably lower for 2-m dewpoint due to the removal

of moist biases present in all other experiments.

Additionally, clustering of ensemble spread was found

across all variables in MM–an undesirable statistical

quality of the ensemble distributions. While we cannot

rule out clustering as a significant issue in ARW-MP, the

increased variety of physics options led to a smoother

FIG. 17. Ensemble standard deviation (color fill) of 500-hPa geopotential height (m) valid at 1700 UTC 16May 2015

(forecast hour 18). Individualmember 5760-mheight contours (blue) are shownwith the analyzedRAP5760-m contour

(green). Values on the upper right of each panel indicate standard deviation averaged over each plotting domain.
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distribution when considered over the whole range of

cases as compared to MM.

The ARW-MPSKEB experiment had the overall best

spread distribution by the end of the forecast, with

SKEB and multiphysics approaches complimenting

each other. SKEB increased the spread of upper-level

fields, particularly in wind, while the multiphysics in-

creased the spread of near-surface fields, particularly for

thermodynamic variables. However, the main drawback

in declaringARW-MPSKEB superior toMM is that this

ensemble spread has a ‘‘spinup’’ period, for both the

multiphysics and SKEB effects. When looking at fore-

cast times less than about 12 h, the MM is still the best

approach to immediately address model error and in-

crease ensemble spread despite the noted clustering

effects. These results suggest that single-model ap-

proaches to address model error may feasibly compete

with amultimodel approach; however, more research on

model error techniques is needed to find a configuration

that outperforms a multimodel approach over all fore-

cast aspects, particularly within earlier hours of the

forecast.

This study did not attempt to evaluate every possible

model error technique. Many different kinds of sto-

chastic physics techniques are being studied across the

literature, with just one chosen for testing in this work.

FIG. 18. As in Fig. 17, but for 850-hPa dewpoint (with 68C spaghetti contour) valid 1500UTC 24May 2016 (forecast

hour 16).
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Additionally, different combinations of dynamical

models or different combinations of multiphysics or

multiparameter schemes may lead to significantly dif-

ferent results than those shown here. However, this

study applied a practical approach to the problem,

by using readily available model dynamical cores and

multiphysics configurations already implemented in

WRF and known to test well for CAE due to experi-

ences within the HWT SFE. In the future, additional

combinations of stochastic and/or multiphysics tech-

niques can be studied given the results here and in other

works (e.g., Berner at el. 2015; Duda et al. 2016; Jankov

et al. 2019) suggest that optimally addressing model er-

ror may rely on combinations of techniques to address

uncertainties. An optimal combination for single-model

approach that is competitive with a multimodel ap-

proach is ideally preferred, since multimodel ensembles

rely on costly development and maintenance of multiple

dynamical cores rather than just one. Furthermore, since

multiphysics ensembles require development and up-

dates to a variety of physics schemes, a practical goal

within CAE forecasting may be to address model error

uncertainty using solely stochastic physics approaches.
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